

AECOM 111 SW Columbia Street Suite 1500 Portland, OR 97201 www.aecom.com 503 222 7200 tel 503 222 4292 fax

October 1, 2015

Mike Romero Oregon Department of Environmental Quality Northwest Region Office 700 NE Multnomah St., Suite #600 Portland, Oregon

Re: Source Control Evaluation Addendum

Phillips 66 Willbridge Terminal Portland, Oregon

Dear Mr. Romero:

AECOM, on behalf of Phillips 66 Company (P66), is providing the Oregon Department of Environmental Quality (DEQ) this Source Control Evaluation Addendum for the Phillips 66 Willbridge Terminal (Site) located in Portland, Oregon (Figure 1). This addendum follows the ConocoPhillips Portland Terminal Source Control Evaluation Report prepared by Stantec during January 2011. The addendum summarizes additional source control investigation activities which were completed in accordance with the Sediment Sampling Work Plan submitted by AECOM in October 2014.

1.0 SCOPE OF WORK

AECOM collected manhole sediment samples and conducted a camera survey of the storm water system lines draining from the Site into manholes 9 and 11 (MH-9 and MH-11). Both manholes receive storm water from the P66 bulk fuel terminal originating from roof drains on the main terminal warehouse, effluent from storm water separator 001, in addition to storm water flows from BNSF and possible other upgradient areas. The flow from Manholes 9 and 11 then flows to Outfall 19. Both manholes are located on the BNSF property adjacent to the Site. Sampling and inspection activities were conducted under dry weather conditions when no visible storm water was observed entering the catch basins. The scope of work is summarized below:

- Collect sediment samples from MH-9 and MH-11
- Conduct a video survey of the storm water lines connecting to MH-9 and MH-11

2.0 SEDIMENT SAMPLING

On March 19, 2015, AECOM met with Burlington Northern Santa Fe (BNSF) on their property to access manholes MH-9 and MH-11. AECOM opened MH-9, however the material in the manhole was heavily cemented, and no fines were present that could be collected. Upon opening MH-11, AECOM observed a steel structure that resembled the bottom half of a steel drum. The steel structure was fixed into the concrete bottom of the manhole (See Photo 2, Appendix A). It was unclear to the field staff if the structure was part of the original design or a remnant from other construction activities. Unsure of the steel structure's purpose, two sediment samples were collected from MH-11: one from inside the steel structure in the bottom of the manhole (MH-11-DRUM), and one from outside of the steel structure (MH-11-OUT). Because of the manhole depth, samples were collected using stainless steel spoons bent at a 90 degree angle and attached to the end of a 10-foot polyvinyl chloride (PVC) pole. The pole allowed samplers to reach the bottom of the manhole from the ground surface. Both samples were collected using clean stainless steel spoons and which were individually composited by mixing thoroughly in a clean stainless steel bowl. Samples were immediately placed into clean glass jars provided by the laboratory and placed on ice.

Source Control Evaluation Addendum October 1, 2015 Page 2 of 4

Per the Work Plan, the sediment samples were submitted for the analyses listed below:

- Selected priority pollutant metals via Environmental Protection Agency (EPA) Method 6020A
 - o Arsenic
 - o Barium
 - o Cadmium
 - o Chromium
 - o Copper
 - o Lead
 - o Silver
 - o Zinc
- Polycyclic Aromatic Hydrocarbons (PAHs) via EPA Method 8270D Selected Ion Monitoring (SIM)
- Petroleum Hydrocarbons as gasoline by Method NWTPH-Gx
- Petroleum Hydrocarbons as diesel and heavy oil by Method NWTPH-Dx
- Polychlorinated Biphenyls (PCBs) via EPA Method 8082A

In accordance with DEQ's request, an additional sampling event was conducted to collect sediment samples to analyze for selenium and mercury, which were not listed in the Work Plan and not previously analyzed.

On June 23, 2015, two sediment samples were collected from MH-11. One sample was collected from inside the perimeter of the steel structure in the bottom of MH-11(MH-11-IN), and the other from outside the perimeter of the steel structure (MH-11-OUT). MH-9 was opened and inspected, however a sample was not collected because the manhole did not contain sediment.

Both samples were collected using clean stainless steel spoons and were then individually composited by mixing thoroughly in a clean stainless steel bowl. Samples were immediately placed into clean glass jars provided by the laboratory and placed on ice.

AECOM handled all samples under standard chain-of-custody (COC) procedures. These procedures are detailed in the Work Plan. Copies of the COC forms are provided with the laboratory data package in Appendix B. Analytical support was provided by Test America (TA) of Beaverton, Oregon.

The sediment samples were submitted for the analyses listed below:

- Selected priority pollutant metals via EPA Method 6020A
 - o Barium
 - o Selenium
- Mercury via EPA Method 7471A

A detailed description of the quality assurance/quality control (QA/QC) process implemented for catch basin sampling was provided in the Data Quality Assurance and Control Plan section of the Work Plan (Section 5). A Data Quality Review Report (DQRR) was completed for the manhole sediment analytical results (Attachment C). The results of this review have been incorporated into the analytical results tables.

3.0 ANALYTICAL RESULTS AND COMPARISON TO SCREENING LEVEL VALUES

Table 1 presents the analytical results from the manhole sediment samples. The results were compared to screening level values (SLVs) provided in the Guidance for Evaluating the Storm water Pathway at Upland Sites (DEQ, 2010), which are based on those included in the Portland Harbor Joint Source Control Strategy (DEQ, 2007). Chemical concentrations in Table 1 are highlighted in yellow where they exceed the SLVs. A summary of SLV exceedances is provided below:

Source Control Evaluation Addendum October 1, 2015 Page 3 of 4

- Mercury was detected above the SLV of 70 micrograms per kilogram (μg/kg) in sample MH-11-IN collected on June 23, 2015 with a concentration of 130 μg/kg.
- Bis(2-Ethylhexyl)phthalate was detected above the SLV of 330 μg/kg in samples MH-11-OUT and MH-11-DRUM collected on March 19, 2015 with concentrations of 980 μg/kg and 820 μg/kg, respectively.
- Di-n-butylphthalate has a method detection limit (MDL) that exceeds the screening value but the samples did not have a detectable concentration.
- Individual PCB aroclors were not detected. Because there were not any detections, Total PCBs were
 calculated by taking the highest MDL for the individual PCB aroclors (Aroclor 1221). The MDL
 exceeds the screening value but the samples did not have a detectable concentration.

4.0 VIDEO SURVEY

Video survey activities were conducted on June 23, 2015 to inspect onsite storm water system lines intersecting MH-9 and MH-11 at the Site. AECOM subcontracted Applied Professional Services Incorporated (APS) of North Bend, Washington to perform the video survey of the storm water system lines. In order to assist working around the backflow preventers and gain access to the storm water system lines for camera inspection purposes, Cowlitz Clean Sweep (CCS) of Longview, Washington was subcontracted to conduct the confined space entry inside MH-11. The sections of surveyed pipes are summarized below and the findings are presented in Figure 2. A copy of the video survey is included on a compact disk (CD) in Attachment D. Still images from the video survey are included in the photolog in Attachment A.

4.1 MH-9 to MH-11

APS used their computerized mainline tractor camera system to inspect the entire pipe length. No water was observed in the storm water pipe. The storm water pipe is approximately 8 inches in diameter but the material it is constructed from could not be determined. The pipe appeared to be in good condition.

4.2 MH-9 to Final Box #2

APS used their computerized mainline tractor camera system to inspect the first 197.5 feet of pipe from MH-9. The tractor system was unable to advance beyond 194 feet due to a fine layer of sediment accumulation making it difficult for the system to gain traction. A material transition from clay to concrete was observed at approximately 197.5 feet, making the stopping spot for the tractor system easily identifiable. A push camera system was subsequently utilized to inspect the remaining pipe section between Final Box #2 (located near Storm Water Separator #001) and MH-9. The push camera was inserted through Final Box #2 and advanced toward MH-9 until the pipe material transition from clay to concrete was observed. Standing water was observed in the pipe section near Final Box #2, however was not present in the majority of the pipe. Debris accumulation was present in the 15 foot section immediately downgradient of Final Box #2, but otherwise was minimal for the remainder of the pipe. The storm water pipe is approximately 8 inches in diameter, and appears to be constructed from clay except for a stretch between 197.5 feet to 205' from MH-9 where it is concrete.

Numerous small cracks and fractures, and some large fractures were observed in the clay pipe section between MH-9 and Final Box #2 (See Appendix A. Photos 9 through 14, and Figure 2). Visible signs of

Source Control Evaluation Addendum October 1, 2015 Page 4 of 4

infiltration were observed at approximately 56 feet, and 96.3 feet from MH-9 (See Appendix A, Photos 9 and 10, and Figure 2).

4.3 **MH-11 toward Cleanout**

APS used their computerized mainline tractor camera system to inspect the first 15.6 feet of pipe from MH-11. The tractor camera system was unable to advance past 15.6 feet because the pipe takes a turn the camera was unable to negotiate. The remaining pipe section between the cleanout and the turn was accessed using a push camera and advancing it through the cleanout located inside the rail car facility on the Site. Debris accumulation and standing water were present throughout the entire pipe section. Visible signs of damage could not be observed due to the amount of debris and water accumulation inside of the pipe. The pipe is approximately 12 inches in diameter and appears to be steel.

4.4 **Roof Drain toward Cleanout**

APS used their push camera to inspect the storm water system line running from the roof drain downspout on the lube oil facility toward the cleanout at the rail car facility on Site. Access was gained through the downspout inside of the lube facility. Debris accumulation was present throughout the pipe length; however debris increased beyond the lateral tie in, approximately 20 horizontal feet west of the downspout. Heavy debris accumulation and standing water made it impossible to advance the camera past 95 feet. Visible signs of damage could not be observed due to the amount of debris and water accumulation inside of the pipe. The pipe is approximately 12-inches in diameter and appears to be steel.

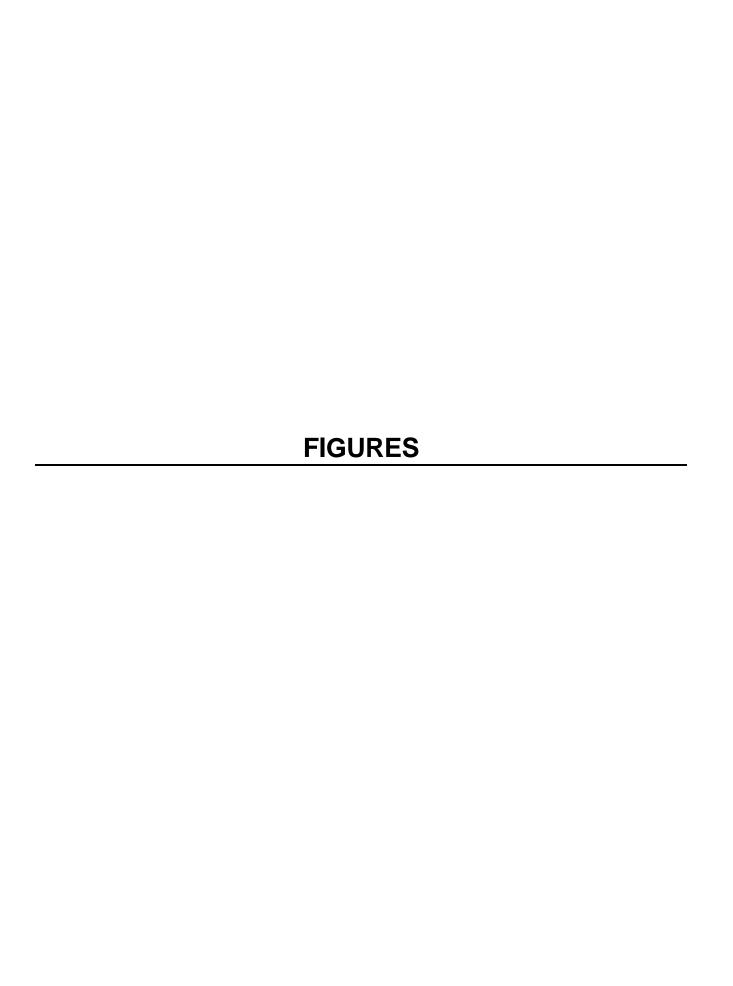
5.0 Conclusions and Recommendations

The storm water pipes contain a number of cracks and offsets and in select areas, accumulated sediment. AECOM recommends that the 12-inch pipe between MH-11 and the roof drained be cleaned to further evaluate the condition. The accumulation of sediment is currently prohibiting a thorough evaluation of the pipe. Once the sediment is removed from the pipe, the pipe will be re-surveyed with the video equipment and a plan to address the storm water system will be developed.

Based on the video survey of the 8-inch pipe between Final Box #2 and MH-9, a number of cracks, offset joints and areas of water infiltration were observed. At this time, Phillips 66 is evaluating options for a path forward. Once the plan has been developed, Phillips 66 will notify the ODEQ with the plan and schedule.

Sincerely,

Bret Waldron Project Manager


bret.waldron@aecom.com

Thomas J. Bialobok Program Manager

thomas.bialobok@aecom.com

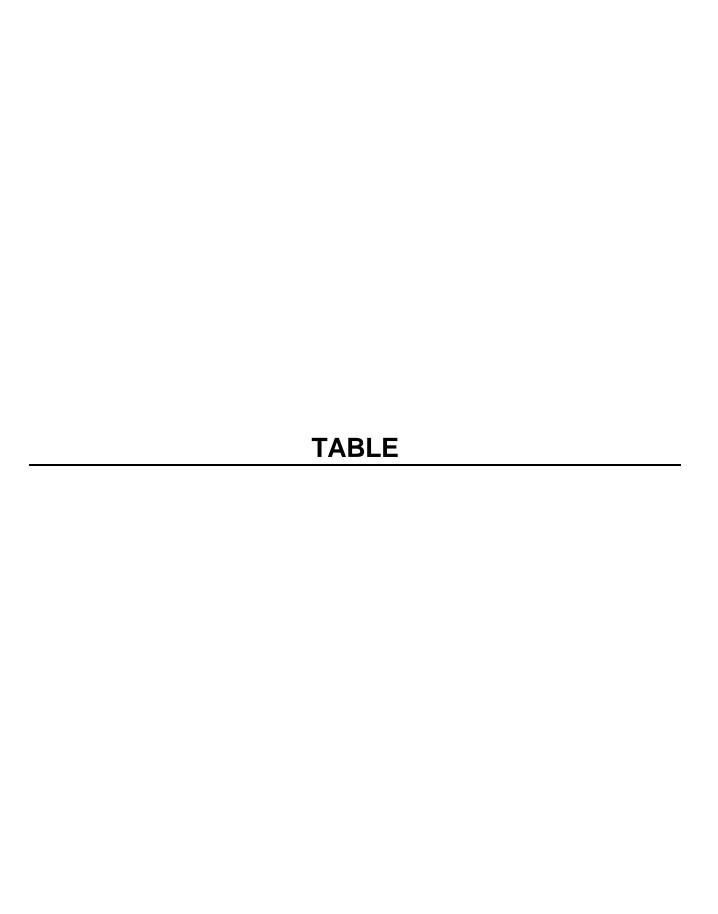
Rich Solomon – Phillips 66 Company CC: Nick Giotti – Phillips 66 Company

Tim Bishop - Chevron EMC

PHILLIPS 66 PORTLAND TERMINAL 5528 NW DOANE AVE. PORTLAND, OR 97210

FIGURE 1

LEGEND



STORMWATER LINE VIDEO SURVEY

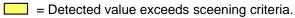
PHILLIPS 66
AUGUST 2015 PORTLAND TERMINAL
5528 NW DOANE AVE. PORTLAND, OR 97210

FIGURE 2

Table 1. Manhole MH-11 Sediment Analytical Results P66 Willbridge Terminal

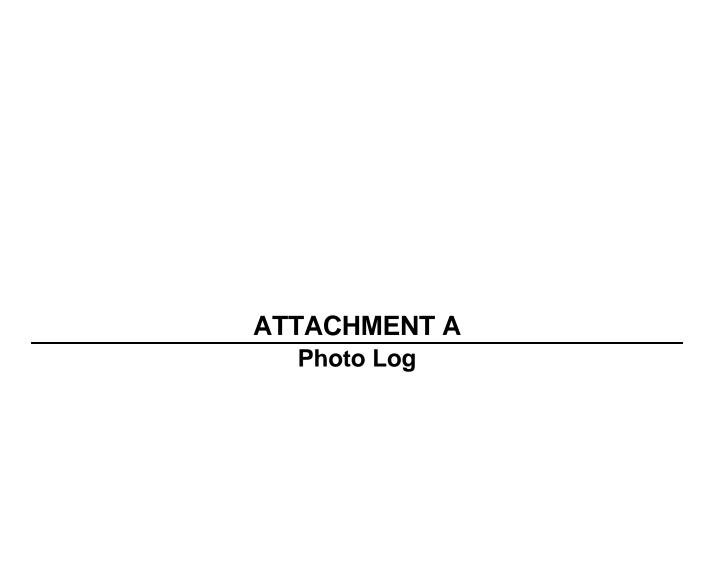
		1	1
	Screening Value ¹	MH-11-outside structure	MH-11-within structure
Units	μg/kg	μg/kg	μg/kg
Metals/Inorganics	•		
Antimony	64,000		
Arsenic	7,000	2,600	1,500
Cadmium	1,000	140 J	100 J
Chromium, total	111,000	24,000	15,000
Copper	149,000	17,000	11,000
Lead	17,000	16,000	11,000
Manganese	1,100,000		
Mercury	70		
Nickel	48,600		
Selenium	2,000		
Silver	5,000	24 J	23 J
Zinc	459,000	65,000	40,000
PCBs Aroclors	100,000	00,000	40,000
Aroclor 1016	530	6.1 U	5.6 U
Aroclor 1221		15.0 U	14.0 U
Aroclor 1232		13.0 U	12.0 U
Aroclor 1232 Aroclor 1242		4.0 U	3.7 U
Aroclor 1248	1,500	5.8 U	5.7 U
Aroclor 1254	300	4.0 U	3.7 U
Aroclor 1260	200	5.8 U	5.7 U
Aroclor 1260 Aroclor 1262			
Aroclor 1268			
Total PCBs	0.39	15.0 U	14 U
Phthalate Esters	0.59	13.0 0	14 0
Dimethylphthalate		10 U	18 J
Diethylphthalate	600	30 U	26 U
Di-n-butylphthalate		100 U	88 U
Butylbenzylphthalate	60	100 U	88 U
Di-n-octylphthalate			
	330	92 J 980 J	8.8 U 820 J
bis(2-Ethylhexyl)phthalate		900 J	020 J
Polycyclic Aromatic Hydroca		1 4411	2.5.11
Naphthalene	561	4.1 U	3.5 U
2-Methylnaphthalene	200	2.4 U	2.1 U
Acenaphthylene	200	5.2 J	0.86 U
Acenaphthene	300	6.7 U	5.4 J
Fluorene	536	4.7 J	3.7 J
Phenanthrene	1,170	65	73
Anthracene	845	17	15
Fluoranthene	2,230	130	180
Pyrene	1,520	140	170
Benzo(a)anthracene	1,050	60	75
Chrysene	1,290	99	120
Benzo(b)fluoranthene		120	130
Benzo(k)fluoranthene	13,000	32	41

Table 1. Manhole MH-11 Sediment Analytical Results
P66 Willbridge Terminal


	Screening Value ¹	MH-11-outside structure	MH-11-within structure
Units	μg/kg	μg/kg	μg/kg
Benzo(a)pyrene	1,450	77	93
Indeno(1,2,3-cd)pyrene	100	72	78
Dibenz(a,h)anthracene	1,300	14	17
Benzo(g,h,i)perylene	300	75	75
Not on Table 3-1			
TPH Diesel		130,000	21,000 J
TPH Heavy Oil		880,000	210,000
TPH-Gx		3,300	1,800 U

Notes:

J = The associated numerical value is an estimated quantity.


U = The material was analyzed for but was not detected at the displayed Method Detect Detected concetrations are shown in **bold**.

The tables provided in DEQ Guidance for Evaluating the Stormwater Pathway at Upland Sites (DEQ, 2010), Appendix D were used as templates for presentation of

⁼ Analyte not detected, but MDL exceeds screening criteria.

¹ The source of each screening criterion is documented in Table 3.1 of the Portland Harbor Joint Source Control Strategy, which can be viewed at

Project Name: Portland Willbridge Terminal SCE

Project Number: 60285571.5625.03

Site Location: Portland, OR

Photograph No.1

Photographer: M. Tauscher

Date: 3/12/15

Direction Photo Taken: South

Comments:

Manhole MH-9 (foreground) and Manhole MH-11 on BNSF Willbridge property.

MH-11 under gravel south of MH-9.

Photograph No.2

Photographer: M. Tauscher

Date: 3/12/15

Direction Photo Taken: NA

Comments:

Inside MH-11. Green backflow cap is the line from P66 OWS #001. Other backflow cap is the line from P66 catch basins and warehouse roof drain. Arrows depict direction of storm water flow. Total depth 10 ft. Steel structure at bottom of MH-11.

Project Name: Portland Willbridge Terminal SCE

Project Number: 60285571.5625.03

Site Location: Portland, OR

Photograph No. 3

Photographer: M. Tauscher

Date: 3/12/15

Direction Photo Taken: NA

Comments:

Manhole MH-9 total depth 7 ft. 2 inches. Blue arrow depicts flow direction.

Photograph No. 4

Photographer: M. Tauscher

Date: 3/12/15

Direction Photo Taken: NA

Comments: Manhole MH-9 outlet.

Project Name: Portland Willbridge Terminal SCE

Project Number: 60285571.5625.03

Site Location: Portland, OR

Photograph No. 5

Photographer: M. Tauscher

Date: 3/12/15

Direction Photo Taken: East -Southeast

Comments:

Steel surface plate over Manhole MH-11.

Photograph No. 6

Photographer: M. Tauscher

Date:

3/12/15

Direction Photo

Taken:

Southwest

Comments:

Second subsurface steel plate over Manhole MH-11

Project Name: Portland Willbridge Terminal SCE

Project Number: 60285571.5625.03

Site Location: Portland, OR

Photograph No. 7

Photographer: B. Waldron

Date: 6/23/15

Direction Photo Taken: N/A

Comments:

CCS employee assists in collecting soil samples from the bottom of MH-11.

Photograph No. 8

Photographer: B. Waldron

D. Waldic

Date: 6/23/15

Direction Photo

Taken:

West

Comments:

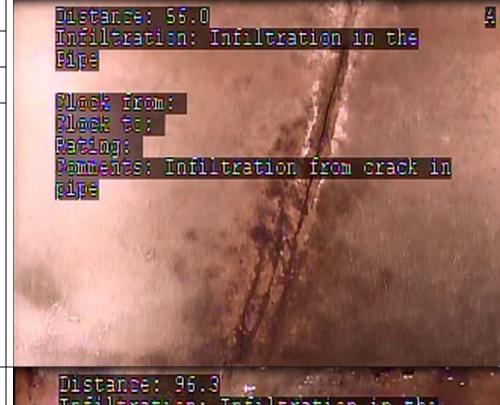
APS preparing the tractor camera system for deployment in MH-9.

Client: Phillips 66 Project Number: 60285571.5625.03

Project Name: Portland Willbridge Terminal SCE Site Location: Portland, OR

Photograph No. 9

Photographer:


APS

Date: 6/23/15

Direction Photo Taken: N/A

Comments:

Crack in the clay pipe between MH9 and Final Box #2 approximately 56 feet upgradient of MH-9. Visible signs of historic infiltration.

Photograph No. 10

Photographer:

APS

Date: 6/23/15

Direction Photo

Taken: N/A

Comments:

Cracked clay pipe with an active infiltration weeper and mineralization approximately 96 feet upgradient of MH-9 between MH-9 and Final Box #2.

Project Name: Portland Willbridge Terminal SCE

Project Number: 60285571.5625.03

Site Location: Portland, OR

Photograph No.

Photographer:

APS

Date: 6/23/15

Direction Photo Taken: N/A

Comments:

Part of a large fracture in the clay pipe approximately 107 feet upgradient of MH-9 between MH-9 and Final Box

#2.

Photograph No. 12

Photographer: APS

Date: 6/23/15

Direction Photo
Taken: Upgradient

Comments:

A large fracture and offset joint in the pipe between MH-9 and Final Box #2, approximately 112' upgradient of MH-9.

Project Name: Portland Willbridge Terminal SCE

Project Number: 60285571.5625.03

Site Location: Portland, OR

Photograph No. 13

Photographer:

APS

Date: 6/23/15

Direction Photo Taken: Upgradient

Comments:

A large fracture and offset joint in the pipe between MH-9 and Final Box #2, approximately 132' upgradient of MH-9.

Photograph No. 14

Photographer: APS

Date: 6/23/15

Direction Photo
Taken: Upgradient

Comments:

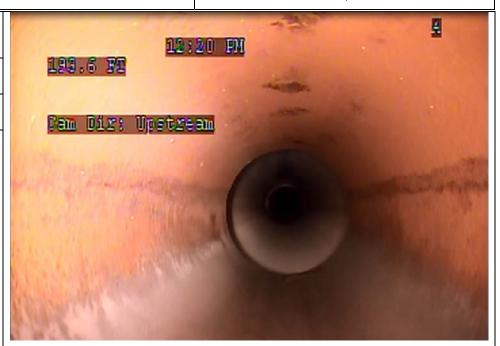
A large fracture and offset joint in the pipe between MH-9 and Final Box #2, approximately 140' upgradient of MH-9.

Project Name: Portland Willbridge Terminal SCE

Project Number: 60285571.5625.03

Site Location: Portland, OR

Photograph No.


Photographer: APS

Date: 6/23/15

Direction Photo Taken: Upgradient

Comments:

A transition from clay to concrete in the pipe between MH-9 and Final Box #2, approximately 197.5' upgradient of MH-9.

Photograph No. 16

Photographer: APS

Date:

6/23/15

Direction Photo Taken:

Downgradient

Comments:

Heavy debris accumulation in the pipe between MH-9 and Final Box #2, approximately 218 feet upgradient of MH-9. Note: photo taken looking downgradient using the push probe camera.

Project Name: Portland Willbridge Terminal SCE

Project Number: 60285571.5625.03

Site Location: Portland, OR

Photograph No. 17

Photographer:

APS

Date: 6/23/15

Direction Photo Taken: Upgradient

Comments:

A large piece of debris in the pipe between MH-11 and the cleanout located in the rail car facility on Site. Photo was taken from the elbow approximately 13.5 feet upgradient from MH-11 where the remote camera could not make the turn. Heavy accumulation noted on the pipe.

Photograph No. 18

Photographer: APS

Date:

6/23/15

Direction Photo Taken:

Downgradient

Comments:

Heavy debris accumulation in the pipe runs between the warehouse roof drain and the rail car facility cleanout. Survey was abandoned here because the push camera would not advance any further. Photo taken at 95 feet downgradient of the downspart.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-48187-1

TestAmerica Sample Delivery Group: Willbridge Terminal

Client Project/Site: PGG/SCE

Revision: 1

For:

URS Corporation 111 SW Columbia St Suite 1500 Portland, Oregon 97201-5850

Attn: Gene Hoilman

Kolly a Lauetto

Authorized for release by: 3/30/2015 2:19:00 PM

Kelly Garretts, Project Manager II

(253)248-4961

kelly.garretts@testamericainc.com

Designee for

Sarah Murphy, Project Manager I (916)373-5600

sarah.murphy@testamericainc.com

----- LINKS ------

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: URS Corporation Project/Site: PGG/SCE

TestAmerica Job ID: 580-48187-1 SDG: Willbridge Terminal

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	5
QC Sample Results	
Chronicle	17
Certification Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	21

-5

4

5

6

8

9

10

Case Narrative

Client: URS Corporation Project/Site: PGG/SCE

TestAmerica Job ID: 580-48187-1 SDG: Willbridge Terminal

3

Job ID: 580-48187-1

Laboratory: TestAmerica Seattle

Narrative

Job Narrative 580-48187-1

Comments

No additional comments.

Receipt

The samples were received on 3/19/2015 2:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.7° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method NWTPH-Dx: In analysis batch 185190, the %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 185099 recovered outside control limits for the following analytes: #2 Diesel fuel (C10-C24) and Motor Oil (>C24-C36). The %recoveries for the LCS and LCSD were within acceptance limits; therefore, the data have been qualified and reported.

Method NWTPH-Dx: In analysis batch 185190, the following sample from preparation batch 185099 contained a hydrocarbon pattern in the diesel range; however, the elution pattern was later than the typical diesel fuel pattern used by the laboratory for quantitative purposes: MH-11-OUT (580-48187-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3550B: In preparation batch 185250, the following sample matrix observations were made for samples MH-11-DRUM (580-48187-2), MH-11-OUT (580-48187-1): the samples contained standing water and some plant/organic matter.

Method 3550B: In preparation batch 185251, the following sample matrix observations were made for samples (580-48187-1 MS), (580-48187-1 MSD), MH-11-DRUM (580-48187-2), MH-11-OUT (580-48187-1): the samples contained standing water and some plant matter.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Definitions/Glossary

Client: URS Corporation Project/Site: PGG/SCE

TestAmerica Job ID: 580-48187-1

SDG: Willbridge Terminal

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier	Qualifier Description
Y	The chromatographic response resembles a typical fuel pattern.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
*	RPD of the LCS and LCSD exceeds the control limits
Metals	

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Qualifier

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DL, RA,	RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion anal
DLC		Decision level concentration
MDA		Minimum detectable activity
EDL		Estimated Detection Limit
MDC		Minimum detectable concentration
MDL		Method Detection Limit

	ML	Minimum Level (Dioxin)
-	NC	Not Calculated
- 1	ND	Not detected at the reporting limit (or MDL or EDL if shown)

Qualifier Description

PQL	Practical Quantitation Limit	
QC	Quality Control	

RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)

		-	-	-		
RPD	Relative	e Percent Dit	fference, a mea	asure of the rel	ative difference	between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Client: URS Corporation Project/Site: PGG/SCE

Client Sample ID: MH-11-OUT

Date Collected: 03/19/15 09:58

Date Received: 03/19/15 14:30

TestAmerica Job ID: 580-48187-1 SDG: Willbridge Terminal

Lab Sample ID: 580-48187-1

Percent Solids: 48.0

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	3.9	J B	20	3.0	ug/Kg	₩	03/26/15 08:08	03/26/15 18:51	1
2-Methylnaphthalene	ND		10	2.4	ug/Kg	₽	03/26/15 08:08	03/26/15 18:51	1
Acenaphthene	6.7	JB	10	1.6	ug/Kg	≎	03/26/15 08:08	03/26/15 18:51	1
Acenaphthylene	5.2	J	10	0.99	ug/Kg	₽	03/26/15 08:08	03/26/15 18:51	1
Anthracene	17		10	1.5	ug/Kg	₩	03/26/15 08:08	03/26/15 18:51	1
Benzo[a]anthracene	60		20	3.0	ug/Kg	₽	03/26/15 08:08	03/26/15 18:51	1
Benzo[a]pyrene	77		10	1.9	ug/Kg	\$	03/26/15 08:08	03/26/15 18:51	1
Benzo[b]fluoranthene	120		20	3.0	ug/Kg	₽	03/26/15 08:08	03/26/15 18:51	1
Benzo[g,h,i]perylene	75		20	3.0	ug/Kg	₽	03/26/15 08:08	03/26/15 18:51	1
Benzo[k]fluoranthene	32		20	3.0	ug/Kg	₽	03/26/15 08:08	03/26/15 18:51	1
Chrysene	99		10	1.8	ug/Kg	₽	03/26/15 08:08	03/26/15 18:51	1
Dibenz(a,h)anthracene	14		10	1.8	ug/Kg	₽	03/26/15 08:08	03/26/15 18:51	1
Fluoranthene	130		10	1.8	ug/Kg	₽	03/26/15 08:08	03/26/15 18:51	1
Fluorene	4.7	J	10	1.3	ug/Kg	₽	03/26/15 08:08	03/26/15 18:51	1
Indeno[1,2,3-cd]pyrene	72		10	1.9	ug/Kg	₽	03/26/15 08:08	03/26/15 18:51	1
Naphthalene	ND		20	4.1	ug/Kg	₽	03/26/15 08:08	03/26/15 18:51	1
Phenanthrene	65		20	3.0	ug/Kg	₩	03/26/15 08:08	03/26/15 18:51	1
Pyrene	140		20	3.0	ug/Kg	\$	03/26/15 08:08	03/26/15 18:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	97		42 - 151				03/26/15 08:08	03/26/15 18:51	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	980	J	1200	100	ug/Kg	₽	03/26/15 08:08	03/26/15 18:25	1
Butyl benzyl phthalate	ND		410	100	ug/Kg	₽	03/26/15 08:08	03/26/15 18:25	1
Diethyl phthalate	ND		410	30	ug/Kg	₽	03/26/15 08:08	03/26/15 18:25	1
Dimethyl phthalate	ND		200	10	ug/Kg	₽	03/26/15 08:08	03/26/15 18:25	1
Di-n-butyl phthalate	ND		1000	100	ug/Kg	₽	03/26/15 08:08	03/26/15 18:25	1
Di-n-octyl phthalate	92	J	1000	10	ug/Kg	₽	03/26/15 08:08	03/26/15 18:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	82		42 - 140				03/26/15 08:08	03/26/15 18:25	1
2-Fluorophenol (Surr)	87		36 - 145				03/26/15 08:08	03/26/15 18:25	1
Nitrobenzene-d5 (Surr)	90		38 - 141				03/26/15 08:08	03/26/15 18:25	1
Phenol-d5 (Surr)	87		38 - 149				03/26/15 08:08	03/26/15 18:25	1
Terphenyl-d14 (Surr)	95		42 - 151				03/26/15 08:08	03/26/15 18:25	1
2,4,6-Tribromophenol (Surr)	89		28 - 143				03/26/15 08:08	03/26/15 18:25	1

Method: NWTPH-Gx - Northwest	- Volatile Petro	oleum Prodi	ucts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	3.3	J B	8.1	1.0	mg/Kg	₽	03/23/15 17:31	03/24/15 07:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analvzed	Dil Fac
Juliogate	70110001019	Quanner	Lillits				rreparea	Analyzea	2
4-Bromofluorobenzene (Surr)	94	- Qualifici	50 ₋ 150				03/23/15 17:31	03/24/15 07:13	1

Method: 8082A - Polychlorinated B	iphenyls (PC	Bs) by Gas	Chromatogra	aphy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.019	0.0061	mg/Kg	*	03/26/15 08:15	03/26/15 18:18	1
PCB-1221	ND		0.021	0.015	mg/Kg	₽	03/26/15 08:15	03/26/15 18:18	1

Client Sample Results

Client: URS Corporation TestAmerica Job ID: 580-48187-1 Project/Site: PGG/SCE SDG: Willbridge Terminal

Client Sample ID: MH-11-OUT

Lab Sample ID: 580-48187-1 Date Collected: 03/19/15 09:58 Matrix: Solid

Date Received: 03/19/15 14:30 Percent Solids: 48.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1232	ND		0.021	0.013	mg/Kg	<u></u>	03/26/15 08:15	03/26/15 18:18	
PCB-1242	ND		0.019	0.0040	mg/Kg		03/26/15 08:15	03/26/15 18:18	• • • • • • • • • • • • • • • • • • • •
PCB-1248	ND		0.019	0.0058	mg/Kg	₽	03/26/15 08:15	03/26/15 18:18	
PCB-1254	ND		0.019	0.0040	mg/Kg	₽	03/26/15 08:15	03/26/15 18:18	
PCB-1260	ND		0.019	0.0058	mg/Kg	\$	03/26/15 08:15	03/26/15 18:18	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	81		50 - 140				03/26/15 08:15	03/26/15 18:18	
Tetrachloro-m-xylene	82		45 - 135				03/26/15 08:15	03/26/15 18:18	
· Method: NWTPH-Dx - Northwest - Se	mi-Volatile	Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
#2 Diesel (C10-C24)	130	Y	51	7.4	mg/Kg		03/24/15 13:28	03/25/15 18:29	
Motor Oil (>C24-C36)	880	Y	100	19	mg/Kg	₽	03/24/15 13:28	03/25/15 18:29	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	87		50 - 150				03/24/15 13:28	03/25/15 18:29	
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	2.6		0.43		mg/Kg	<u> </u>	03/23/15 18:21	03/24/15 16:32	
Barium	96		0.43	0.067	mg/Kg	₩	03/23/15 18:21	03/24/15 16:32	
Cadmium	0.14	J	0.17	0.016	mg/Kg	₽	03/23/15 18:21	03/24/15 16:32	:
Chromium	24		0.43	0.054	mg/Kg	₽	03/23/15 18:21	03/24/15 16:32	
Copper	17		0.34	0.084	mg/Kg	₩	03/23/15 18:21	03/24/15 16:32	
Lead	16		0.43	0.041	mg/Kg	₩	03/23/15 18:21	03/24/15 16:32	
Silver	0.024	J	0.17	0.010	mg/Kg	₽	03/23/15 18:21	03/24/15 16:32	
Zinc	65		4.3	0.96	mg/Kg	₽	03/23/15 18:21	03/24/15 16:32	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Percent Solids	48		0.10		%			03/24/15 08:09	
			0.10		%			03/24/15 08:09	

Client: URS Corporation Project/Site: PGG/SCE

TestAmerica Job ID: 580-48187-1 SDG: Willbridge Terminal

Lab Sample ID: 580-48187-2

Matrix: Solid Percent Solids: 53.4

Client	Sample ID:	MH-11-DRUM		

Date Collected: 03/19/15 10:23 Date Received: 03/19/15 14:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		18	2.6	ug/Kg	₩	03/26/15 08:08	03/26/15 19:13	1
2-Methylnaphthalene	ND		8.8	2.1	ug/Kg	₽	03/26/15 08:08	03/26/15 19:13	1
Acenaphthene	5.4	J B	8.8	1.4	ug/Kg	₽	03/26/15 08:08	03/26/15 19:13	1
Acenaphthylene	ND		8.8	0.86	ug/Kg	₽	03/26/15 08:08	03/26/15 19:13	1
Anthracene	15		8.8	1.3	ug/Kg	☼	03/26/15 08:08	03/26/15 19:13	1
Benzo[a]anthracene	75		18	2.6	ug/Kg	₽	03/26/15 08:08	03/26/15 19:13	1
Benzo[a]pyrene	93		8.8	1.6	ug/Kg	₽	03/26/15 08:08	03/26/15 19:13	1
Benzo[b]fluoranthene	130		18	2.6	ug/Kg	₽	03/26/15 08:08	03/26/15 19:13	1
Benzo[g,h,i]perylene	75		18	2.6	ug/Kg	☼	03/26/15 08:08	03/26/15 19:13	1
Benzo[k]fluoranthene	41		18	2.6	ug/Kg	₽	03/26/15 08:08	03/26/15 19:13	1
Chrysene	120		8.8	1.6	ug/Kg	☼	03/26/15 08:08	03/26/15 19:13	1
Dibenz(a,h)anthracene	17		8.8	1.6	ug/Kg	₩	03/26/15 08:08	03/26/15 19:13	1
Fluoranthene	180		8.8	1.5	ug/Kg	₽	03/26/15 08:08	03/26/15 19:13	1
Fluorene	3.7	J	8.8	1.1	ug/Kg	₩	03/26/15 08:08	03/26/15 19:13	1
Indeno[1,2,3-cd]pyrene	78		8.8	1.6	ug/Kg	₩	03/26/15 08:08	03/26/15 19:13	1
Naphthalene	ND		18	3.5	ug/Kg	₽	03/26/15 08:08	03/26/15 19:13	1
Phenanthrene	73		18	2.6	ug/Kg	☼	03/26/15 08:08	03/26/15 19:13	1
Pyrene	170		18	2.6	ug/Kg	₩	03/26/15 08:08	03/26/15 19:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	94		42 - 151				03/26/15 08:08	03/26/15 19:13	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	820	J	1100	88	ug/Kg	\$	03/26/15 08:08	03/26/15 17:35	1
Butyl benzyl phthalate	ND		350	88	ug/Kg	₽	03/26/15 08:08	03/26/15 17:35	1
Diethyl phthalate	ND		350	26	ug/Kg	₽	03/26/15 08:08	03/26/15 17:35	1
Dimethyl phthalate	18	J	180	8.8	ug/Kg	₽	03/26/15 08:08	03/26/15 17:35	1
Di-n-butyl phthalate	ND		880	88	ug/Kg	₽	03/26/15 08:08	03/26/15 17:35	1
Di-n-octyl phthalate	ND		880	8.8	ug/Kg	₽	03/26/15 08:08	03/26/15 17:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	
2-Fluorobiphenyl	83	42 - 140	03/26/15 08:08 03/26/15 17:35	_
2-Fluorophenol (Surr)	89	36 ₋ 145	03/26/15 08:08	
Nitrobenzene-d5 (Surr)	85	38 - 141	03/26/15 08:08	
Phenol-d5 (Surr)	89	38 - 149	03/26/15 08:08	
Terphenyl-d14 (Surr)	94	42 - 151	03/26/15 08:08	
2,4,6-Tribromophenol (Surr)	80	28 - 143	03/26/15 08:08	

Method: NWTPH-Gx - Northwes	st - Volatile Petro	oleum Prod	ucts (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	1.8	J B	7.4	0.92	mg/Kg	₩	03/23/15 17:31	03/24/15 07:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		50 - 150				03/23/15 17:31	03/24/15 07:47	1
Trifluorotoluene (Surr)	75		50 - 150				03/23/15 17:31	03/24/15 07:47	1

Method: 8082A - Polychlorinated B	siphenyls (PCBs) by Gas (Chromatogra	phy					
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND -	0.017	0.0056	mg/Kg	-	03/26/15 08:15	03/26/15 19:08	1
PCB-1221	ND	0.019	0.014	mg/Kg	₩	03/26/15 08:15	03/26/15 19:08	1

Client Sample Results

Client: URS Corporation TestAmerica Job ID: 580-48187-1 Project/Site: PGG/SCE SDG: Willbridge Terminal

Client Sample ID: MH-11-DRUM

Lab Sample ID: 580-48187-2 Date Collected: 03/19/15 10:23 Date Received: 03/19/15 14:30

Matrix: Solid Percent Solids: 53.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1232	ND		0.019	0.012	mg/Kg	\$	03/26/15 08:15	03/26/15 19:08	1
PCB-1242	ND		0.017	0.0037	mg/Kg	₽	03/26/15 08:15	03/26/15 19:08	1
PCB-1248	ND		0.017	0.0052	mg/Kg	₽	03/26/15 08:15	03/26/15 19:08	1
PCB-1254	ND		0.017	0.0037	mg/Kg	₽	03/26/15 08:15	03/26/15 19:08	1
PCB-1260	ND		0.017	0.0052	mg/Kg	\$	03/26/15 08:15	03/26/15 19:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	82		50 - 140				03/26/15 08:15	03/26/15 19:08	1
Tetrachloro-m-xylene	63		45 - 135				03/26/15 08:15	03/26/15 19:08	1
- Method: NWTPH-Dx - Northwest -	- Semi-Volatile	Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	21	J	43	6.2	mg/Kg	₩	03/24/15 13:28	03/25/15 19:05	1
Motor Oil (>C24-C36)	210	Y	87	16	mg/Kg	₽	03/24/15 13:28	03/25/15 19:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	76		50 - 150				03/24/15 13:28	03/25/15 19:05	1
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.5		0.36	0.13	mg/Kg	☼	03/23/15 18:21	03/24/15 16:36	5
Barium	75		0.36	0.056	mg/Kg	₩	03/23/15 18:21	03/24/15 16:36	5
Cadmium	0.10	J	0.14	0.014	mg/Kg	₩	03/23/15 18:21	03/24/15 16:36	5
Chromium	15		0.36	0.046	mg/Kg	*	03/23/15 18:21	03/24/15 16:36	5
Copper	11		0.29	0.071	mg/Kg	₽	03/23/15 18:21	03/24/15 16:36	5
Lead	11		0.36	0.035	mg/Kg	₽	03/23/15 18:21	03/24/15 16:36	5
Silver	0.023	J	0.14	0.0087	mg/Kg	₽	03/23/15 18:21	03/24/15 16:36	5
Zinc	40		3.6	0.81	mg/Kg	₽	03/23/15 18:21	03/24/15 16:36	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	53		0.10		%			03/24/15 08:09	1

TestAmerica Job ID: 580-48187-1

SDG: Willbridge Terminal

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-185250/1-A

Matrix: Solid

Analysis Batch: 185300

Client: URS Corporation

Project/Site: PGG/SCE

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 185250

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	ND		600	50	ug/Kg		03/26/15 08:08	03/26/15 15:54	1
Butyl benzyl phthalate	ND		200	50	ug/Kg		03/26/15 08:08	03/26/15 15:54	1
Diethyl phthalate	43.2	J	200	15	ug/Kg		03/26/15 08:08	03/26/15 15:54	1
Dimethyl phthalate	ND		100	5.0	ug/Kg		03/26/15 08:08	03/26/15 15:54	1
Di-n-butyl phthalate	ND		500	50	ug/Kg		03/26/15 08:08	03/26/15 15:54	1
Di-n-octyl phthalate	ND		500	5.0	ug/Kg		03/26/15 08:08	03/26/15 15:54	1

MR MR

	1110	W.D				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	81		42 - 140	03/26/15 08:08	03/26/15 15:54	1
2-Fluorophenol (Surr)	83		36 - 145	03/26/15 08:08	03/26/15 15:54	1
Nitrobenzene-d5 (Surr)	87		38 - 141	03/26/15 08:08	03/26/15 15:54	1
Phenol-d5 (Surr)	83		38 - 149	03/26/15 08:08	03/26/15 15:54	1
Terphenyl-d14 (Surr)	89		42 - 151	03/26/15 08:08	03/26/15 15:54	1
2,4,6-Tribromophenol (Surr)	70		28 - 143	03/26/15 08:08	03/26/15 15:54	1

Lab Sample ID: LCS 580-185250/2-A

Matrix: Solid

Analysis Batch: 185300

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 185250

	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Bis(2-ethylhexyl) phthalate	1000	1090		ug/Kg		109	62 - 144	·	
Butyl benzyl phthalate	1000	1070		ug/Kg		107	69 - 142		
Diethyl phthalate	1000	911		ug/Kg		91	73 - 116		
Dimethyl phthalate	1000	908		ug/Kg		91	78 - 117		
Di-n-butyl phthalate	1000	1080		ug/Kg		108	66 - 140		
Di-n-octyl phthalate	1000	1040		ug/Kg		104	65 - 141		

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	89		42 - 140
2-Fluorophenol (Surr)	91		36 - 145
Nitrobenzene-d5 (Surr)	96		38 - 141
Phenol-d5 (Surr)	94		38 - 149
Terphenyl-d14 (Surr)	99		42 - 151
2,4,6-Tribromophenol (Surr)	96		28 - 143

Lab Sample ID: LCSD 580-185250/3-A

Matrix: Solid

Analysis Batch: 185300

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 185250

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bis(2-ethylhexyl) phthalate	1000	1090		ug/Kg		109	62 - 144	0	30
Butyl benzyl phthalate	1000	1060		ug/Kg		106	69 - 142	1	30
Diethyl phthalate	1000	914		ug/Kg		91	73 - 116	0	26
Dimethyl phthalate	1000	926		ug/Kg		93	78 - 117	2	30
Di-n-butyl phthalate	1000	1070		ug/Kg		107	66 - 140	0	30
Di-n-octyl phthalate	1000	1040		ug/Kg		104	65 - 141	0	30

TestAmerica Seattle

Page 9 of 21

3/30/2015

TestAmerica Job ID: 580-48187-1 SDG: Willbridge Terminal

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-185250/3-A

Matrix: Solid

Analysis Batch: 185300

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 185250

LCSD	LCSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	85		42 - 140
2-Fluorophenol (Surr)	90		36 - 145
Nitrobenzene-d5 (Surr)	91		38 - 141
Phenol-d5 (Surr)	90		38 - 149
Terphenyl-d14 (Surr)	97		42 - 151
2,4,6-Tribromophenol (Surr)	94		28 - 143

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 580-185250/1-A

Matrix: Solid

Analysis Batch: 185261

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 185250

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	1.75	J	10	1.5	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
2-Methylnaphthalene	2.05	J	5.0	1.2	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
Acenaphthene	1.63	J	5.0	0.77	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
Acenaphthylene	ND		5.0	0.49	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
Anthracene	ND		5.0	0.74	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
Benzo[a]anthracene	ND		10	1.5	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
Benzo[a]pyrene	ND		5.0	0.93	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
Benzo[b]fluoranthene	ND		10	1.5	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
Benzo[g,h,i]perylene	ND		10	1.5	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
Benzo[k]fluoranthene	ND		10	1.5	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
Chrysene	ND		5.0	0.89	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
Dibenz(a,h)anthracene	ND		5.0	0.90	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
Fluoranthene	ND		5.0	0.87	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
Fluorene	ND		5.0	0.63	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.92	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
Naphthalene	ND		10	2.0	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
Phenanthrene	ND		10	1.5	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
Pyrene	ND		10	1.5	ug/Kg		03/26/15 08:08	03/26/15 17:45	1
	***	***							

MB MB

%Recovery Qualifier Surrogate Limits Prepared Dil Fac Analyzed Terphenyl-d14 42 - 151 03/26/15 08:08 98 03/26/15 17:45

Lab Sample ID: LCS 580-185250/2-A

Matrix: Solid

Analysis Batch: 185261

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 185250

Analysis Baton: 100201							1 10p D	atom. 100200
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1-Methylnaphthalene	1000	999		ug/Kg		100	62 - 118	
2-Methylnaphthalene	1000	943		ug/Kg		94	64 - 119	
Acenaphthene	1000	1100		ug/Kg		110	68 - 116	
Acenaphthylene	1000	1030		ug/Kg		103	68 - 120	
Anthracene	1000	1130		ug/Kg		113	73 - 116	
Benzo[a]anthracene	1000	872		ug/Kg		87	76 ₋ 119	

Client: URS Corporation Project/Site: PGG/SCE

TestAmerica Job ID: 580-48187-1 SDG: Willbridge Terminal

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 580-185250/2-A

Lab Sample ID: LCSD 580-185250/3-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 185261

Analysis Batch: 185261

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 185250

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[a]pyrene	1000	859	-	ug/Kg		86	72 _ 117	
Benzo[b]fluoranthene	1000	893		ug/Kg		89	63 _ 132	
Benzo[g,h,i]perylene	1000	852		ug/Kg		85	55 - 139	
Benzo[k]fluoranthene	1000	769		ug/Kg		77	63 _ 119	
Chrysene	1000	964		ug/Kg		96	75 - 114	
Dibenz(a,h)anthracene	1000	905		ug/Kg		91	56 - 134	
Fluoranthene	1000	979		ug/Kg		98	73 _ 125	
Fluorene	1000	1030		ug/Kg		103	70 - 121	
Indeno[1,2,3-cd]pyrene	1000	797		ug/Kg		80	56 - 127	
Naphthalene	1000	947		ug/Kg		95	62 _ 112	
Phenanthrene	1000	931		ug/Kg		93	73 - 106	
Pyrene	1000	1020		ug/Kg		102	70 - 120	

LCS LCS

Surrogate %Recovery Qualifier Limits Terphenyl-d14 96 42 - 151

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 185250

Spike LCSD LCSD RPD %Rec. Added Result Qualifier RPD Limit Analyte Unit %Rec Limits 1000 978 98 62 _ 118 2 30 1-Methylnaphthalene ug/Kg 2-Methylnaphthalene 1000 909 ug/Kg 91 64 - 119 27 1000 1080 Acenaphthene ug/Kg 108 68 - 116 27 2 Acenaphthylene 1000 1010 ug/Kg 101 68 - 120 28 Anthracene 1000 1080 ug/Kg 108 73 - 116 5 27 Benzo[a]anthracene 1000 845 ug/Kg 84 76 - 119 3 27 1000 843 84 72 - 117 30 Benzo[a]pyrene ug/Kg 1000 855 85 Benzo[b]fluoranthene ug/Kg 63 - 132 30 1000 Benzo[g,h,i]perylene 837 ug/Kg 84 55 - 139 2 28 Benzo[k]fluoranthene 1000 781 78 63 - 119 ug/Kg 30 1000 970 97 75 - 114 26 Chrysene ug/Kg Dibenz(a,h)anthracene 1000 892 ug/Kg 89 56 - 134 2 30 Fluoranthene 1000 976 ug/Kg 98 73 - 125 30 Fluorene 1000 985 98 70 - 121 5 30 ug/Kg Indeno[1,2,3-cd]pyrene 1000 824 ug/Kg 82 56 - 127 3 29 1000 931 93 2 26 Naphthalene ug/Kg 62 - 112 Phenanthrene 1000 904 ug/Kg 90 73 - 106 3 28 1000 1000 ug/Kg 100 70 - 120 30 Pyrene

LCSD LCSD

Surrogate %Recovery Qualifier Limits Terphenyl-d14 92 42 - 151

Client: URS Corporation Project/Site: PGG/SCE

TestAmerica Job ID: 580-48187-1 SDG: Willbridge Terminal

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-185019/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA **Prep Batch: 185019** Analysis Batch: 185020 мв мв

Result Qualifier RL MDL Unit Analyte D Prepared Analyzed Dil Fac Gasoline 0.910 J 4.0 0.50 mg/Kg 03/23/15 17:31 03/24/15 05:35

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		50 - 150	03/23/15 17:31	03/24/15 05:35	1
Trifluorotoluene (Surr)	107		50 - 150	03/23/15 17:31	03/24/15 05:35	1

Client Sample ID: Lab Control Sample

Matrix: Solid

Lab Sample ID: LCS 580-185019/2-A

Analysis Batch: 185020

Prep Type: Total/NA

Prep Batch: 185019

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits Gasoline 40.0 33.5 68 - 120 mg/Kg

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		50 - 150
Trifluorotoluene (Surr)	105		50 - 150

Lab Sample ID: LCSD 580-185019/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 185020

Prep Type: Total/NA

Prep Batch: 185019

RPD %Rec.

LCSD LCSD Spike Analyte Added Result Qualifier Unit %Rec RPD Limit Gasoline 40.0 37.5 mg/Kg 68 - 120 25

LCSD LCSD Surrogate %Recovery Qualifier I imits 4-Bromofluorobenzene (Surr) 99 50 - 150 Trifluorotoluene (Surr) 115 50 - 150

Lab Sample ID: 580-48187-2 MS Client Sample ID: MH-11-DRUM

Matrix: Solid

Analysis Batch: 185020

Prep Type: Total/NA

Prep Batch: 185019

MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Gasoline 1.8 JB 35.8 22.9 59 50 - 150 mg/Kg

MS MS

1.8 JB

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		50 - 150
Trifluorotoluene (Surr)	75		50 ₋ 150

Lab Sample ID: 580-48187-2 MSD Client Sample ID: MH-11-DRUM

Matrix: Solid

Gasoline

Analysis Batch: 185020 **Prep Batch: 185019** Sample Sample Spike MSD MSD %Rec. RPD Added Result Qualifier Analyte Result Qualifier Unit D %Rec Limits RPD Limit

23.1

mg/Kg

61

50 - 150

35.1

TestAmerica Seattle

35

Prep Type: Total/NA

TestAmerica Job ID: 580-48187-1 SDG: Willbridge Terminal

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: 580-48187-2 MSD

Matrix: Solid

Analysis Batch: 185020

Client Sample ID: MH-11-DRUM Prep Type: Total/NA

Prep Batch: 185019

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		50 - 150
Trifluorotoluene (Surr)	76		50 - 150

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 580-185251/1-A

Matrix: Solid

Analysis Batch: 185307

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 185251

мв мв MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac PCB-1016 0.010 03/26/15 08:15 ND 0.0032 mg/Kg 03/26/15 17:29 PCB-1221 ND 03/26/15 08:15 03/26/15 17:29 0.011 0.0080 mg/Kg PCB-1232 ND 0.011 0.0070 mg/Kg 03/26/15 08:15 03/26/15 17:29 PCB-1242 ND 0.010 0.0021 mg/Kg 03/26/15 08:15 03/26/15 17:29 PCB-1248 NΠ 0.010 0.0030 mg/Kg 03/26/15 08:15 03/26/15 17:29 PCB-1254 ND 0.010 0.0021 mg/Kg 03/26/15 08:15 03/26/15 17:29 PCB-1260 ND 0.010 0.0030 mg/Kg 03/26/15 08:15 03/26/15 17:29

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	98		50 - 140	03/26/15 08:15	03/26/15 17:29	1
Tetrachloro-m-xylene	47		45 - 135	03/26/15 08:15	03/26/15 17:29	1

Lab Sample ID: LCS 580-185251/4-A

Matrix: Solid

Analysis Batch: 185307

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 185251

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	 0.100	0.0652		mg/Kg	_	65	40 - 140	
PCB-1260	0.100	0.0869		mg/Kg		87	60 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	94		50 - 140
Tetrachloro-m-xylene	47		45 - 135

Lab Sample ID: LCSD 580-185251/5-A

Matrix: Solid

Analysis Batch: 185307

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 185251**

-	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	RPD	Limit
PCB-1016	0.100	0.0672		mg/Kg	67	40 - 140	3	20
PCB-1260	0.100	0.0917		mg/Kg	92	60 - 130	5	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	94		50 - 140
Tetrachloro-m-xylene	49		45 - 135

Client: URS Corporation Project/Site: PGG/SCE

TestAmerica Job ID: 580-48187-1 SDG: Willbridge Terminal

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: 580-48187-1 MS

Matrix: Solid

Analysis Batch: 185307

Client Sample ID: MH-11-OUT Prep Type: Total/NA

Prep Batch: 185251

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016	ND		0.207	0.184		mg/Kg	₩	89	40 - 140
PCB-1260	ND		0.207	0.179		mg/Kg	₽	86	60 - 130

MS MS Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl 82 50 - 140 80 45 - 135 Tetrachloro-m-xylene

Client Sample ID: MH-11-OUT

Prep Type: Total/NA **Prep Batch: 185251**

Matrix: Solid Analysis Batch: 185307

Lab Sample ID: 580-48187-1 MSD

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	ND		0.193	0.158		mg/Kg	\	82	40 - 140	15	20
PCB-1260	ND		0.193	0.165		mg/Kg	₽	86	60 - 130	8	20

MSD MSD Limits Surrogate %Recovery Qualifier DCB Decachlorobiphenyl 86 50 - 140 Tetrachloro-m-xylene 80 45 - 135

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

мв мв

Lab Sample ID: MB 580-185099/1-A

Matrix: Solid

Analysis Batch: 185190

Client Sample ID: Method Blank	
Prep Type: Total/NA	
Prep Batch: 185099	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		25	3.6	mg/Kg		03/24/15 13:28	03/25/15 17:16	1
Motor Oil (>C24-C36)	ND		50	9.1	mg/Kg		03/24/15 13:28	03/25/15 17:16	1
	МВ	МВ							

Surrogate Qualifier Limits Prepared %Recovery Analyzed Dil Fac 50 - 150 03/24/15 13:28 03/25/15 17:16 o-Terphenyl 89

Lab Sample ID: LCS 580-185099/2-A

Matrix: Solid

Analysis Batch: 185190

Client Sample ID: Lab Control Sample	è
Prep Type: Total/NA	١

Prep Batch: 185099

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
#2 Diesel (C10-C24)	500	484		mg/Kg	_	97	70 - 125	
Motor Oil (>C24-C36)	502	558		mg/Kg		111	64 - 127	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	95		50 - 150

Client: URS Corporation Project/Site: PGG/SCE

TestAmerica Job ID: 580-48187-1 SDG: Willbridge Terminal

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCSD 580-185099/3-A

Matrix: Solid

Analysis Batch: 185190

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 185099**

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
#2 Diesel (C10-C24)	 500	402	*	mg/Kg		80	70 - 125	19	16
Motor Oil (>C24-C36)	502	465	*	mg/Kg		93	64 - 127	18	17

LCSD LCSD

%Recovery Qualifier Surrogate I imits o-Terphenyl 81 50 - 150

Client Sample ID: MH-11-OUT

Prep Type: Total/NA

Matrix: Solid Analysis Batch: 185190 **Prep Batch: 185099** Sample Sample DU DU RPD Result Qualifier Result Qualifier RPD Limit Analyte Unit D # #2 Diesel (C10-C24) 130 Y 165 28 35 mg/Kg # Motor Oil (>C24-C36) 880 Y 1170 mg/Kg 28 35

DU DU

Surrogate %Recovery Qualifier Limits o-Terphenyl 99 50 - 150

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: 580-48187-1 DU

Lab Sample ID: MB 580-185031/21-A

Matrix: Solid

Analysis Batch: 185137

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 185031

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.50	0.18	mg/Kg		03/23/15 18:21	03/24/15 15:45	10
Barium	ND		0.50	0.078	mg/Kg		03/23/15 18:21	03/24/15 15:45	10
Cadmium	ND		0.20	0.019	mg/Kg		03/23/15 18:21	03/24/15 15:45	10
Chromium	ND		0.50	0.063	mg/Kg		03/23/15 18:21	03/24/15 15:45	10
Copper	ND		0.40	0.098	mg/Kg		03/23/15 18:21	03/24/15 15:45	10
Lead	ND		0.50	0.048	mg/Kg		03/23/15 18:21	03/24/15 15:45	10
Silver	ND		0.20	0.012	mg/Kg		03/23/15 18:21	03/24/15 15:45	10
Zinc	ND		5.0	1.1	mg/Kg		03/23/15 18:21	03/24/15 15:45	10

Lab Sample ID: LCS 580-185031/22-A

Matrix: Solid

Analysis Batch: 185137

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 185031

Analysis Batch. 100107							i icp Batcii. 100001	
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	200	189		mg/Kg		95	80 - 120	
Barium	200	195		mg/Kg		98	80 - 120	
Cadmium	5.00	4.82		mg/Kg		96	80 _ 120	
Chromium	20.0	19.3		mg/Kg		96	80 - 120	
Copper	25.0	22.9		mg/Kg		91	80 - 120	
Lead	50.0	47.3		mg/Kg		95	80 - 120	
Silver	30.0	31.4		mg/Kg		105	80 - 120	
Zinc	200	184		mg/Kg		92	80 - 120	

QC Sample Results

Client: URS Corporation TestAmerica Job ID: 580-48187-1 Project/Site: PGG/SCE SDG: Willbridge Terminal

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: LCSD 580-185031/23-A

Matrix: Solid

Analysis Batch: 185137

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA
	Prop Batch: 195031

		Spike	LCSD	LCSD				%Rec.		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic		200	188		mg/Kg		94	80 - 120	1	20
Barium		200	190		mg/Kg		95	80 - 120	2	20
Cadmium		5.00	4.64		mg/Kg		93	80 - 120	4	20
Chromium		20.0	18.7		mg/Kg		94	80 - 120	3	20
Copper		25.0	22.4		mg/Kg		90	80 - 120	2	20
Lead		50.0	45.9		mg/Kg		92	80 - 120	3	20
Silver		30.0	30.7		mg/Kg		102	80 - 120	2	20
Zinc		200	183		mg/Kg		92	80 - 120	0	20
	Arsenic Barium Cadmium Chromium Copper Lead Silver	Arsenic Barium Cadmium Chromium Copper Lead Silver	Analyte Added Arsenic 200 Barium 200 Cadmium 5.00 Chromium 20.0 Copper 25.0 Lead 50.0 Silver 30.0	Analyte Added Result Arsenic 200 188 Barium 200 190 Cadmium 5.00 4.64 Chromium 20.0 18.7 Copper 25.0 22.4 Lead 50.0 45.9 Silver 30.0 30.7	Analyte Added Result Qualifier Arsenic 200 188 Barium 200 190 Cadmium 5.00 4.64 Chromium 20.0 18.7 Copper 25.0 22.4 Lead 50.0 45.9 Silver 30.0 30.7	Analyte Added Result qualifier Unit Arsenic 200 188 mg/Kg Barium 200 190 mg/Kg Cadmium 5.00 4.64 mg/Kg Chromium 20.0 18.7 mg/Kg Copper 25.0 22.4 mg/Kg Lead 50.0 45.9 mg/Kg Silver 30.0 30.7 mg/Kg	Analyte Added Result Qualifier Unit D Arsenic 200 188 mg/Kg Barium 200 190 mg/Kg Cadmium 5.00 4.64 mg/Kg Chromium 20.0 18.7 mg/Kg Copper 25.0 22.4 mg/Kg Lead 50.0 45.9 mg/Kg Silver 30.0 30.7 mg/Kg	Analyte Added Result Qualifier Unit D %Rec Arsenic 200 188 mg/Kg 94 Barium 200 190 mg/Kg 95 Cadmium 5.00 4.64 mg/Kg 93 Chromium 20.0 18.7 mg/Kg 94 Copper 25.0 22.4 mg/Kg 90 Lead 50.0 45.9 mg/Kg 92 Silver 30.0 30.7 mg/Kg 102	Analyte Added Result Qualifier Unit D %Rec Limits Arsenic 200 188 mg/Kg 94 80 - 120 Barium 200 190 mg/Kg 95 80 - 120 Cadmium 5.00 4.64 mg/Kg 93 80 - 120 Chromium 20.0 18.7 mg/Kg 94 80 - 120 Copper 25.0 22.4 mg/Kg 90 80 - 120 Lead 50.0 45.9 mg/Kg 92 80 - 120 Silver 30.0 30.7 mg/Kg 102 80 - 120	Analyte Added Result Qualifier Unit D %Rec Limits RPD Arsenic 200 188 mg/Kg 94 80 - 120 1 Barium 200 190 mg/Kg 95 80 - 120 2 Cadmium 5.00 4.64 mg/Kg 93 80 - 120 4 Chromium 20.0 18.7 mg/Kg 94 80 - 120 3 Copper 25.0 22.4 mg/Kg 90 80 - 120 2 Lead 50.0 45.9 mg/Kg 92 80 - 120 3 Silver 30.0 30.7 mg/Kg 102 80 - 120 2

Client: URS Corporation Project/Site: PGG/SCE

Client Sample ID: MH-11-OUT

Date Collected: 03/19/15 09:58

Date Received: 03/19/15 14:30

TestAmerica Job ID: 580-48187-1 SDG: Willbridge Terminal

Lab Sample ID: 580-48187-1

Matrix: Solid Percent Solids: 48.0

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3550B			185250	03/26/15 08:08	EKK	TAL SEA	
Total/NA	Analysis	8270D		1	185300	03/26/15 18:25	AHP	TAL SEA	
Total/NA	Prep	3550B			185250	03/26/15 08:08	EKK	TAL SEA	
Total/NA	Analysis	8270D SIM		1	185261	03/26/15 18:51	AHP	TAL SEA	
Total/NA	Prep	5030B			185019	03/23/15 17:31	IWH	TAL SEA	
Total/NA	Analysis	NWTPH-Gx		1	185020	03/24/15 07:13	IWH	TAL SEA	
Total/NA	Prep	3550B			185251	03/26/15 08:15	EKK	TAL SEA	
Total/NA	Analysis	8082A		1	185307	03/26/15 18:18	EKK	TAL SEA	
Total/NA	Prep	3546			185099	03/24/15 13:28	ERZ	TAL SEA	
Total/NA	Analysis	NWTPH-Dx		1	185190	03/25/15 18:29	CGM	TAL SEA	
Total/NA	Prep	3050B			185031	03/23/15 18:21	PAB	TAL SEA	
Total/NA	Analysis	6020A		5	185137	03/24/15 16:32	FCW	TAL SEA	
Total/NA	Analysis	D 2216		1	185050	03/24/15 08:09	ERZ	TAL SEA	

Client Sample ID: MH-11-DRUM Lab Sample ID: 580-48187-2

Date Collected: 03/19/15 10:23 **Matrix: Solid** Date Received: 03/19/15 14:30 Percent Solids: 53.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			185250	03/26/15 08:08	EKK	TAL SEA
Total/NA	Analysis	8270D		1	185300	03/26/15 17:35	AHP	TAL SEA
Total/NA	Prep	3550B			185250	03/26/15 08:08	EKK	TAL SEA
Total/NA	Analysis	8270D SIM		1	185261	03/26/15 19:13	AHP	TAL SEA
Total/NA	Prep	5030B			185019	03/23/15 17:31	IWH	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	185020	03/24/15 07:47	IWH	TAL SEA
Total/NA	Prep	3550B			185251	03/26/15 08:15	EKK	TAL SEA
Total/NA	Analysis	8082A		1	185307	03/26/15 19:08	EKK	TAL SEA
Total/NA	Prep	3546			185099	03/24/15 13:28	ERZ	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	185190	03/25/15 19:05	CGM	TAL SEA
Total/NA	Prep	3050B			185031	03/23/15 18:21	PAB	TAL SEA
Total/NA	Analysis	6020A		5	185137	03/24/15 16:36	FCW	TAL SEA
Total/NA	Analysis	D 2216		1	185050	03/24/15 08:09	ERZ	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Certification Summary

Client: URS Corporation Project/Site: PGG/SCE SDG: Willbridge Terminal

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-02-16
California	State Program	9	2901	01-31-17
L-A-B	DoD ELAP		L2236	01-19-16
L-A-B	ISO/IEC 17025		L2236	01-19-16
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-15
US Fish & Wildlife	Federal		LE192332-0	02-28-16
USDA	Federal		P330-11-00222	04-08-17
Washington	State Program	10	C553	02-17-16

Laboratory: TestAmerica Portland

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-012	12-26-15
California	State Program	9	2597	09-30-15
Oregon	NELAP	10	OR100021	01-09-16
USDA	Federal		P330-11-00092	04-17-17
Washington	State Program	10	C586	06-23-15

TestAmerica Job ID: 580-48187-1

Sample Summary

Client: URS Corporation Project/Site: PGG/SCE

TestAmerica Job ID: 580-48187-1 SDG: Willbridge Terminal

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-48187-1	MH-11-OUT	Solid	03/19/15 09:58	03/19/15 14:30
580-48187-2	MH-11-DRUM	Solid	03/19/15 10:23	03/19/15 14:30

TestAmerica Portland

3405 3% Winbus Avenue

Beaverton, OR 97008

Chain of Custody Record

Phone: 503.906.9200 Fax: Regulatory Program: DW NPDES RCRA Other: 3713) Date: 3/19/15 ICOC No: I Project Manager: Tow Biolobok **Client Contact** Site Contact: Grene Helmen COCs Carrier: Tel/Fax: Lab Contact: Company Name: AELOM III SW Columbia **Analysis Turnaround Time** suite 1500 Sampler: Holman M. TAUSCHER For Lab Use Only: City/State/Zip: Polland. OR CALENDAR DAYS WORKING DAYS Walk-in Client: Phone: 503-722-7200 TAT if different from Below AR OCLORS Fax: Lab Sampling: METAL 2 weeks Project Name: PG6 / SCE 1 week Site: Willbridge Job / SDG No .: 2 days PO# 1 day 6020 Sample Type Sample Sample (C=Comp. Date-Time Cont. Sample Identification G=Grab) **Matrix** Sample Specific Notes: 3/19 3 G MH-11 - OUT 3 MH-11- DRUM 1023 Preservation Used: //E/ice /2=HCl/ 3=H2SO4: 4=HN03: 5=NaOH: 6=Other... Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Disposal by Lab Archive for_ Non-Hazard Skin Irritant Poison B Unknown Return to Client Flammable Special Instructions/QC Requirements & Comments: 8270 SIM FOR PAH and PHTHALATES METALS - AS, CU. Cr. Ba, Cd, Pb, Ag, Zn Corr'd: Custody Seal No.: Therm ID No.: Custody Seals Intact: Relinguished by: Company: Date/Time: **3/9/5** AECON Company Relinguished by: Company: Date/Time: Relinquished by: Company: Date/Time: Received in Laboratory by: Company:

Login Sample Receipt Checklist

Client: URS Corporation

Job Number: 580-48187-1

SDG Number: Willbridge Terminal

List Source: TestAmerica Seattle

Login Number: 48187 List Number: 1

Creator: Lehman, Clarissa A

Cleator. Lemman, Clanssa A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

3

6

0

9

10

1.

12

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-51093-1 Client Project/Site: Phillips 66

For:

URS Corporation 111 SW Columbia Suite 1500 Portland, Oregon 97201-5814

Attn: Brian Pletcher

Authorized for release by:

7/7/2015 4:14:24 PM

Sarah Murphy, Project Manager I (253)922-2310

sarah.murphy@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: URS Corporation Project/Site: Phillips 66

TestAmerica Job ID: 580-51093-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	
QC Sample Results	9
QC Association	11
Chronicle	12
Certification Summary	13
Sample Summary	14
Chain of Custody	15
Receint Checklists	16

Case Narrative

Client: URS Corporation TestAmerica Job ID: 580-51093-1 Project/Site: Phillips 66

Job ID: 580-51093-1

Laboratory: TestAmerica Seattle

Narrative

Job Narrative 580-51093-1

Receipt

The samples were received on 6/24/2015 3:06 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.8° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

,

9

3

Λ

0

10

11

Definitions/Glossary

Client: URS Corporation Project/Site: Phillips 66 TestAmerica Job ID: 580-51093-1

Qualifiers

Metals

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
F3	Duplicate RPD exceeds the control limit

Glossary

NC

ND

PQL

QC

RER

RL RPD

TEF

TEQ

Not Calculated

Quality Control

Relative error ratio

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

TestAmerica Seattle

Client: URS Corporation Project/Site: Phillips 66

TestAmerica Job ID: 580-51093-1

Client Sample ID: MH-11-IN Date Collected: 06/23/15 10:25

Lab Sample ID: 580-51093-1

Matrix: Solid

Date Received: 06/24/15 15:06

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	65		0.10	0.10	%			07/01/15 19:17	1
Percent Moisture	35		0.10	0.10	%			07/01/15 19:17	1

5

7

8

40

11

Client: URS Corporation Project/Site: Phillips 66

TestAmerica Job ID: 580-51093-1

Client Sample ID: MH-11-IN Lab Sample ID: 580-51093-1

Date Collected: 06/23/15 10:25 Matrix: Solid Date Received: 06/24/15 15:06

Percent Solids: 65.1

	Method: 6020A - Metals (ICP/MS)									
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Barium	93		0.34	0.053	mg/Kg	<u></u>	07/01/15 15:50	07/02/15 09:52	5
	Selenium	0.72		0.68	0.14	mg/Kg	₩	07/01/15 15:50	07/02/15 09:52	5
_	- -									

Method: 7471A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.13	F1	0.025	0.0076	mg/Kg		07/02/15 15:55	07/02/15 18:21	1

Client: URS Corporation TestAmerica Job ID: 580-51093-1 Project/Site: Phillips 66

Client Sample ID: MH-11-OUT Lab Sample ID: 580-51093-2

Date Collected: 06/23/15 10:30

Matrix: Solid

Date Received: 06/24/15 15:06

General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	40	0.10	0.10	%			07/01/15 19:17	1
Percent Moisture	60	0.10	0.10	%			07/01/15 19:17	1

e

8

9

1 U

Client: URS Corporation Project/Site: Phillips 66

Mercury

Client Sample ID: MH-11-OUT

Date Collected: 06/23/15 10:30

Date Received: 06/24/15 15:06

TestAmerica Job ID: 580-51093-1

Lab Sample ID: 580-51093-2

 ☼
 07/02/15 15:55
 07/02/15 18:30

Matrix: Solid

Percent Solids: 40.3

Method: 6020A - Metals (ICP/MS) Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	91	0.35	0.054	mg/Kg	<u> </u>	07/01/15 15:50	07/02/15 09:59	5
Selenium	1.1	0.70	0.14	mg/Kg	☼	07/01/15 15:50	07/02/15 09:59	5
Method: 7471A - Mercury (CVAA)	Result Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac

0.035

0.051

0.010 mg/Kg

5

7

10

11

TestAmerica Job ID: 580-51093-1

Client: URS Corporation Project/Site: Phillips 66

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 580-193785/17-A

Matrix: Solid

Analysis Batch: 193908

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 193785**

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	ND		0.25	0.039	mg/Kg		07/01/15 15:50	07/02/15 07:48	5
Selenium	ND		0.50	0.10	mg/Kg		07/01/15 15:50	07/02/15 07:48	5

Lab Sample ID: LCS 580-193785/18-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 193908 Prep Batch: 193785** LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Barium 200 187 mg/Kg 94 80 - 120 Selenium 200 184 mg/Kg 92 80 - 120

Lab Sample ID: LCSD 580-193785/19-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 193908** Prep Batch: 193785 LCSD LCSD Spike %Rec. **RPD** Analyte Added Result Qualifier D %Rec Limits RPD Limit Unit Barium 200 188 mq/Kq 94 80 - 120 20 Selenium 200 181 91 80 - 120 20 mg/Kg 2

Lab Sample ID: LCSSRM 580-193785/20-A **Client Sample ID: Lab Control Sample Matrix: Solid**

Analysis Batch: 193908

Prep Batch: 193785 Spike LCSSRM LCSSRM %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Barium 203 188 92.5 73.4 - 127. mg/Kg 88.2 67.8 - 131. Selenium 177 156 mg/Kg 6

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 580-193921/16-A

Matrix: Solid

Analysis Batch: 194036

MB MB

RL **MDL** Unit Analyte Result Qualifier **Prepared** Analyzed Dil Fac Mercury ND 0.020 0.0060 mg/Kg 07/02/15 15:55 07/02/15 18:14

Lab Sample ID: LCS 580-193921/17-A **Matrix: Solid**

Analysis Batch: 194036

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Mercury 0.167 0.158 mg/Kg 95 80 - 120

TestAmerica Seattle

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

QC Sample Results

Client: URS Corporation TestAmerica Job ID: 580-51093-1 Project/Site: Phillips 66

Method: 7471A - Mercury (CVAA) (Continued)

0.13 F1

Mercury

Lab Sample ID: LCSD 580-19	A				Client Sai	mple	ID: Lat	Control				
Matrix: Solid									Prep Tyl			
Analysis Batch: 194036			Spike	LCSD	LCSD				Prep Ba	aten: 18	RPD	
Analyte			Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	ī
Mercury			0.167	0.153		mg/Kg		92	80 - 120	4	20	
Lab Sample ID: 580-51093-1	MS							Client	Sample I	D: MH-	11-IN	
Matrix: Solid									Prep Ty			
Analysis Batch: 194036									Prep Ba			
	Sample	Sample	Spike	MS	MS				%Rec.			
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits			
Mercury	0.13	F1	0.203	0.285	F1	mg/Kg	<u></u>	76	80 - 120			
Lab Cample ID: 500 54002 4	MCD							Client	Commis	D. MII	44 INI	
Lab Sample ID: 580-51093-1	MSD							Cilent	Sample I			
Matrix: Solid									Prep Ty	pe: Tot	al/NA	
Analysis Batch: 194036									Prep Ba	atch: 19	3921	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	

Lab Sample ID: 580-51093 Matrix: Solid	-1 DU					Clie	nt Sample II Prep Typ		
Analysis Batch: 194036							Prep Ba	tch: 19	93921
_	Sample	Sample	DU	DU			•		RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Mercury	0.13	F1	 0.0815	F3	mg/Kg	₩		47	20

0.283 F1

mg/Kg

0.209

80 - 120

QC Association Summary

Client: URS Corporation TestAmerica Job ID: 580-51093-1 Project/Site: Phillips 66

Metals

Prep Batch: 193785

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-51093-1	MH-11-IN	Total/NA	Solid	3050B	
580-51093-2	MH-11-OUT	Total/NA	Solid	3050B	
LCS 580-193785/18-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 580-193785/19-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
LCSSRM 580-193785/20-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 580-193785/17-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 193908

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-51093-1	MH-11-IN	Total/NA	Solid	6020A	193785
580-51093-2	MH-11-OUT	Total/NA	Solid	6020A	193785
LCS 580-193785/18-A	Lab Control Sample	Total/NA	Solid	6020A	193785
LCSD 580-193785/19-A	Lab Control Sample Dup	Total/NA	Solid	6020A	193785
LCSSRM 580-193785/20-A	Lab Control Sample	Total/NA	Solid	6020A	193785
MB 580-193785/17-A	Method Blank	Total/NA	Solid	6020A	193785

Prep Batch: 193921

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-51093-1	MH-11-IN	Total/NA	Solid	7471A	
580-51093-1 DU	MH-11-IN	Total/NA	Solid	7471A	
580-51093-1 MS	MH-11-IN	Total/NA	Solid	7471A	
580-51093-1 MSD	MH-11-IN	Total/NA	Solid	7471A	
580-51093-2	MH-11-OUT	Total/NA	Solid	7471A	
LCS 580-193921/17-A	Lab Control Sample	Total/NA	Solid	7471A	
LCSD 580-193921/18-A	Lab Control Sample Dup	Total/NA	Solid	7471A	
MB 580-193921/16-A	Method Blank	Total/NA	Solid	7471A	

Analysis Batch: 194036

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-51093-1	MH-11-IN	Total/NA	Solid	7471A	193921
580-51093-1 DU	MH-11-IN	Total/NA	Solid	7471A	193921
580-51093-1 MS	MH-11-IN	Total/NA	Solid	7471A	193921
580-51093-1 MSD	MH-11-IN	Total/NA	Solid	7471A	193921
580-51093-2	MH-11-OUT	Total/NA	Solid	7471A	193921
LCS 580-193921/17-A	Lab Control Sample	Total/NA	Solid	7471A	193921
LCSD 580-193921/18-A	Lab Control Sample Dup	Total/NA	Solid	7471A	193921
MB 580-193921/16-A	Method Blank	Total/NA	Solid	7471A	193921

General Chemistry

Analysis Batch: 193799

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
580-51093-1	MH-11-IN	Total/NA	Solid	D 2216	
580-51093-2	MH-11-OUT	Total/NA	Solid	D 2216	

TestAmerica Seattle

7/7/2015

Page 11 of 16

Lab Chronicle

Client: URS Corporation Project/Site: Phillips 66

TestAmerica Job ID: 580-51093-1

Lab Sample ID: 580-51093-1

Matrix: Solid

Date Collected: 06/23/15 10:25 Date Received: 06/24/15 15:06

Client Sample ID: MH-11-IN

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	193799	07/01/15 19:17	PAB	TAL SEA

Client Sample ID: MH-11-IN Lab Sample ID: 580-51093-1

Date Collected: 06/23/15 10:25 **Matrix: Solid**

Date Received: 06/24/15 15:06 Percent Solids: 65.1

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			193785	07/01/15 15:50	PAB	TAL SEA
Total/NA	Analysis	6020A		5	193908	07/02/15 09:52	FCW	TAL SEA
Total/NA	Prep	7471A			193921	07/02/15 15:55	PAB	TAL SEA
Total/NA	Analysis	7471A		1	194036	07/02/15 18:21	FCW	TAL SEA

Lab Sample ID: 580-51093-2 **Client Sample ID: MH-11-OUT**

Date Collected: 06/23/15 10:30 **Matrix: Solid**

Date Received: 06/24/15 15:06

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	193799	07/01/15 19:17	PAB	TAL SEA

Client Sample ID: MH-11-OUT Lab Sample ID: 580-51093-2

Date Collected: 06/23/15 10:30 **Matrix: Solid** Date Received: 06/24/15 15:06 Percent Solids: 40.3

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			193785	07/01/15 15:50	PAB	TAL SEA
Total/NA	Analysis	6020A		5	193908	07/02/15 09:59	FCW	TAL SEA
Total/NA	Prep	7471A			193921	07/02/15 15:55	PAB	TAL SEA
Total/NA	Analysis	7471A		1	194036	07/02/15 18:30	FCW	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Certification Summary

Client: URS Corporation TestAmerica Job ID: 580-51093-1
Project/Site: Phillips 66

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-02-16
California	State Program	9	2901	01-31-17
L-A-B	DoD ELAP		L2236	01-19-16
L-A-B	ISO/IEC 17025		L2236	01-19-16
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-15
US Fish & Wildlife	Federal		LE192332-0	02-28-16
USDA	Federal		P330-11-00222	04-08-17
Washington	State Program	10	C553	02-17-16

3

4

5

6

8

9

10

Sample Summary

Client: URS Corporation Project/Site: Phillips 66

TestAmerica Job ID: 580-51093-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-51093-1	MH-11-IN	Solid	06/23/15 10:25	06/24/15 15:06
580-51093-2	MH-11-OUT	Solid	06/23/15 10:30	06/24/15 15:06

Δ

6

R

9

10

44

TestAmerica Portland

9405 SW Nimbus Avenue

Chain of Custody Record

CO

Beaverton, OR 97008

phone 503.906.9200 fax	Regu	latory Pro	gram:	DW [NPD	ES [R	CRA _	Other:					580-51	1093 0	Chain	of Cu	ustody es, In
Client Contact	Project N	lanager: B	ian Pletche	er .		Site	Con	tact: G	ene Ho	ilman		Date	6/23/2					· -
AECOM	Tel/Fax:	503-243-3	120			Lab	Con	tact: Sa	arah Mu	ırphy		Carr	er:	-				1 of1 COCs
111 SW Columbia St. STE 1500		Analysis T	urnaround	Time			T		T	T					П			Sampler: GRH
Portland, OR 97201	CAL	NDAR DAYS	W	ORKING DA	AYS	1 1	ì			1 1			1					For Lab Use Only:
(503) 222-7200 Phone	TA	if different fr	om BelowS	Standard_	_	7 /2	2		H									Walk-in Client:
(xxx) xxx-xxxx FAX			2 weeks			Z												Lab Sampling:
Project Name: Phillips 66			1 week			> ;	o o											
Site:			2 days) el	g g											Job / SDG No.:
P O # 60285571			1 day			E 0	a, H					11						
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Filtered S	Metals: Ba, Hg, Se											Sample Specific Notes:
MH-11-IN	6/23/15	10:25	G	S	2		ИΧ											
MH-11-OUT	6/23/15	10:30	G	S	2	NI	VХ											
										\sqcap								
									\sqcap								†	
						Π				† †				丁				
							T											
						П	1		11	$\dagger \dagger$		11				+		
						Ħ				1			11	7			1	
						T	\top			11			+	1		1	\vdash	
							1			11		\Box		\top		\top		
													\top				T	
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5:	NaOH; 6=	Other				4	+			† †	\top		+	+	+ +	1		
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please Comments Section if the lab is to dispose of the sample. Non-Hazard Flammable Skin Irritant	List any EP		odes for the		in the	9		le Disp		A fee	-	Disposa						d longer than 1 month) Months
Special Instructions/QC Requirements & Comments:									Z 100	16	7		****					
MDL Report. Use Metals methods to best meet the following de	tection limits	:: Ba: No J	SCS Limit;	Hg: 0.07	'0 mg/k	g; Se	: 2 m		0 m	30 >	P	es,	نامس	Wol	unt	pn	ومادو	led in 2 jars each
Custody Seals Intact: Yes No	Custody 8	Seal No.:			-			Co	oler Te	emp. (°C): O	bs'd:		Cor				Therm ID No.:
Relinquished by	Company	raM		Date/Ti			Recei	ved by:	8.	70	4		Con	pany:	p			Date/Timer. 6/24/IS /506
Relinquished by:	Company			Date/Ti	me: /8	;40 F	Recei	ved by:		/-/	7			ipany:		-		Date/Time:
Relinquished by:	Company		-	Date/Ti	me:	F	Recei	ved in L	aborato	ory by	c		Con	npany:				Date/Time:

Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013

റ

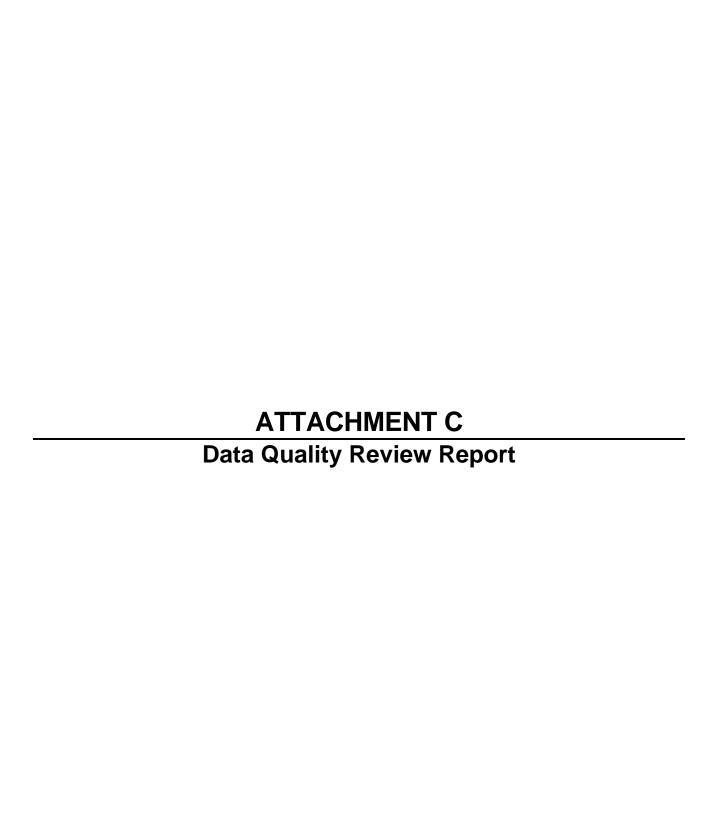
(J)

4

ა | 1

Client: URS Corporation

Job Number: 580-51093-1


Login Number: 51093 List Source: TestAmerica Seattle

List Number: 1

Creator: Gonzales, Steve

Creator. Gorizales, Steve		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

TestAmerica Seattle

Data Quality Review Report

This data quality review assesses the laboratory results for the sediment samples collected in support of the *Phillips 66 Source Control Evaluation Sediment Sampling Work Plan* (AECOM, 2014). Two sediment samples were collected on June 23rd, 2015. Samples were submitted to TestAmerica (TA) of Seattle, Washington and analyzed for total barium and selenium by Environmental Protection Agency (EPA) Method 6020A and total mercury by EPA Method 7471A. The results were reported on a dry weight basis.

The sediment sample results are reported in TA work order J51093. The analytical results for all samples were reviewed using guidance from the EPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (EPA, 2014), and laboratory quality control (QC) criteria (as applicable for each analytical method used). The following items and data quality indicators were reviewed:

Representativeness

- Chain of Custody (COC) records
- Case Narrative
- Proper sample collection and handling procedures
- Holding times
- Method / Laboratory blank analysis

Accuracy

• Laboratory Control Spike (LCS) recoveries

• Matrix Spike (MS) recoveries

Precision

 Laboratory duplicate (laboratory duplicate, matrix spike duplicate [MSD], or LCS duplicate [LCSD]) precision

Comparability

• Compound Identification

• Method detection limit (MDL) and method reporting limits (MRL)

Completeness

Data completeness and format

A summary of qualifiers assigned to results in this investigation is included in Table 1. Qualifiers applied to the data as a result of the review were limited to:

- U The analyte was not detected above the MDL. The reported non-detect concentration is the MDL.
- J The reported value is an estimated concentration. An example would be that the reported detection was above the MDL but below the MRL.

Data Quality Review Report

- UJ The analyte was not detected above the MDL. However, the reported concentration is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified. No associated value is reported.
- DNR Do Not Report. Multiple results from different analytical dates and/or dilutions. Value from another analysis should be used.

REPRESENTATIVENESS

Chain-of-Custody and Holding Times

The COC forms indicate that samples were maintained under COC and forms were signed upon release and receipt. The temperature of the coolers received were within the EPA-recommended limits of ≤ 6 degrees Celsius.

All project samples were analyzed within technical hold times.

Case Narrative

All items discussed in the TA case narrative are discussed in the following sections.

Review of Blanks

Method Blanks

Method blanks were used to check for laboratory contamination and instrument bias. The laboratory analyzed at least one method blank for each analysis and for each batch, per method requirements. Target analytes were not reported as detected in the associated method blanks.

ACCURACY

Laboratory Control Samples/Laboratory Control Sample Duplicates

LCS/LCSD analyses are used to monitor the laboratory's day-to-day performance of routine analytical methods, independent of matrix effects and to assess accuracy for the target compounds. The laboratory analyzed at least one LCS or LCS/LCSD for each applicable analysis and for each batch per method requirements. All LCS/LCSD percent recoveries met laboratory acceptance criteria.

Matrix Spike/Matrix Spike Duplicates

MS/MSD samples are analyzed to assess the ability of the laboratory to recover the target compounds from the sample matrix, as well as to measure accuracy of the analysis. As applicable, qualifiers have been applied to only the parent sample when the recoveries were outside the laboratory acceptance limits and the associated LCS was in control. All other MS/MSD recoveries were acceptable with the following exceptions:

Data Quality Review Report

Parent Sample ID (Laboratory ID)	Analyte	MS/MSD %Recovery (Laboratory Limits)	Qualification
MH-11-IN (580-51093-1)	Mercury	76/73 (80-120)	The LCS was in control indicating the batch was acceptable. The parent sample result was qualified as estimated and flagged 'J'.

PRECISION

Laboratory Duplicate

TA performed a laboratory duplicate on all batches in accordance to the method criteria. With the exceptions listed below; laboratory precision was acceptable for all duplicates performed. The relative percent difference (RPD) for sediment sample laboratory duplicate was calculated when sample results were greater than five times (5x) the MRL and compared to laboratory control limits.

Parent Sample ID (Laboratory ID)	Analyte	%RPD (Laboratory Limit = 20)	Qualification
MH-11-IN (580-51093-1)	Mercury	47	None. The parent sample was previously qualified as estimated for MS recovery.

COMPARABILITY

Reporting Limits

The sensitivity (i.e., reporting limits) of the analytical methods is driven by the project specific objectives. The reporting limits met the project objectives.

COMPLETENESS

Completeness is defined as the percentage of usable data out of the total amount of data generated. Some data were qualified as estimated and flagged 'J'. A summary of assigned qualifiers can be found in Table 1. Completeness for the sediment samples is 100%.

REFERENCES

AECOM, 2014. Phillips 66 Source Control Evaluation, Sediment Sampling Work Plan. October 16.

EPA, 2014. EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. August.

Table 1. Sample Qualification Summary

Sample Number	TA Laboratory Identification	Analyte	Data Qualifier	Reason for Qualification
MH-11-IN	(580-51093-1)	Mercury	J	MS recovery

Observations by Inspections

SITE DATA Mainline ID: City: 5528 NW Doane Ave AECOM2 Portland Upstream node: Downstream node: Pipe type: Pipe shape: Pipe height: Pipe width: MH 9 Not Known MH 11 Circular 8 INSPECTION DATA End date/time: Scheduled date: Start date/time: 6/23/2015 11:11:20 AM 6/23/2015 11:11:43 AM 6/23/2015 11:14:11 AM Surveyed footage: Operator: Work order no.: 4.7 Stopped Dan Wright Condition: Reason: Weather: Satisfactory Assessment Dry Comments

Footage	Rev.	Length	Clock From	Clock To	Code	Modifiers/Severity	Rating				
2.0	No				START WITH FLOW						
4.7	No				Catch Basin						
4.7	No		STOP								

Observations by Inspections

SITE DATA Mainline ID: City: Address: **AECOM3** 5528 NW Doane Ave **Portland** Upstream node: Pipe shape: Downstream node: Pipe type: Pipe height: Pipe width: Final Box 2 MH 9 Steel 8 Circular **INSPECTION DATA** Scheduled date: Start date/time: End date/time: 6/23/2015 12:36:27 PM 6/23/2015 11:18:09 AM 6/23/2015 11:19:48 AM Work order no.: Surveyed footage: Status: Operator: 197.5 Stopped Dan Wright Condition: Reason: Weather: Satisfactory Assessment Dry Comments

Footage	Rev.	Length	Clock From	Clock To	Code	Modifiers/Severity	Rating
3.0	Yes				START AGAINST FLOW		
47.8	Yes				Crack	Multiple - Narrow	
56.0	Yes				Crack	Multiple - Narrow	
56.1	Yes				Infiltration		
58.0	Yes				Crack	Spiral - Narrow	
79.7	Yes				Crack	Multiple - Narrow	
83.0	Yes				Crack	Circular - Narrow	
96.3	Yes				Crack	Multiple - Narrow	
96.3	Yes				Infiltration		
107.2	Yes				Crack	Multiple - Narrow	
112.0	Yes				Crack	Multiple - Narrow	
128.0	Yes				Crack	Multiple - Narrow	
132.3	Yes				Crack	Multiple - Narrow	

Footage	Rev.	Length	Clock From	Clock To	Code	Modifiers/Severity	Rating
132.3	Yes				Joint Offset	Small	
140.5	Yes				Crack	Multiple - Wider	
140.5	Yes				Joint Offset		
177.7	Yes				Crack	Multiple - Wider	
194.0	Yes				STOP		
197.5	Yes				Abandoned Survey		

Observations by Inspections

		S	ITE DATA				
ainline ID:	C	ity:	Addres	ss:			
ECOM1	Portland		5528	NW Doane Av	е		
stream node:	Downstream node: MH 11		Pipe type:	Pipe shape:	Plpe height:	Pipe width:	
/0			Steel	Circular	12		
		INSP	ECTION D	ATA			
Scheduled date:			Start date/time	e:	End date/time:		
	6/23/2015 10:43:08 AM		6/23/2015 10:43:51 AM		6/23/2015 10:50:23 AM		
Surveyed footage:	Status: Operator:					Work order no.:	
15.6	Stopped	Dan Wrig	ght				
Reason:	Weather:	(Condition:				
Assessment Dry			Satisfactory				

Footage	Rev.	Length	Clock From	Clock To	Code	Modifiers/Severity	Rating	
6.0	Yes				START AGAINST FLOW			
15.6	Yes				Debris	>30%		
15.6	Yes		Abandoned Survey					
15.6	Yes	STOP						